
Unit-1: Mathematics at Upper Primary Stage

(Nature, Aims, Objectives, Mathematical Language, Patterns)

Nature of Mathematics (MCQ 1–40)

1. Mathematics is primarily a subject of
 - A. Memorization
 - B. Guesswork
 - C. Logical reasoning**
 - D. Opinion
2. Mathematics develops the ability to think
 - A. Emotionally
 - B. Randomly
 - C. Logically**
 - D. Negatively
3. Mathematics is called a systematic science because it is based on
 - A. Feelings
 - B. Assumptions
 - C. Logical structure**
 - D. Stories
4. Mathematical concepts are mostly
 - A. Concrete
 - B. Emotional
 - C. Abstract**
 - D. Imaginative
5. The abstract nature of mathematics means
 - A. It is confusing
 - B. It is unrelated to life
 - C. It deals with symbols and ideas**
 - D. It is boring
6. Mathematics helps in recognizing
 - A. Emotions
 - B. Colors
 - C. Patterns and relationships**
 - D. Stories
7. Mathematics is independent of
 - A. Logic
 - B. Reasoning
 - C. Language barriers**
 - D. Symbols
8. The beauty of mathematics lies in its
 - A. Lengthy calculations
 - B. Complexity
 - C. Precision and accuracy**
 - D. Memorization
9. Mathematics is cumulative because
 - A. Topics are unrelated
 - B. Each concept builds on previous ones**
 - C. It is repetitive
 - D. It is flexible
10. Mathematics is considered a universal language because
 - A. It uses English
 - B. Symbols are same everywhere**
 - C. It uses numbers only
 - D. It is easy
11. The logical nature of mathematics helps learners to
 - A. Guess answers
 - B. Draw valid conclusions**
 - C. Memorize facts
 - D. Avoid reasoning
12. Mathematics differs from other subjects because it is
 - A. Descriptive

B. Emotional
C. Exact and precise
D. Opinion-based

13. Mathematical thinking mainly involves
A. Imagination
B. Guessing
C. Reasoning and proof
D. Memorization

14. Mathematics develops
A. Language skill
B. Emotional intelligence
C. Problem-solving ability
D. Artistic skill

15. Mathematics is a science of
A. Experiments
B. Nature
C. Numbers and relations
D. Living beings

16. Mathematical proofs are based on
A. Opinion
B. Belief
C. Logical arguments
D. Observation

17. The symbolic nature of mathematics helps in
A. Confusion
B. Memorization
C. Quick communication
D. Storytelling

18. Mathematics is value-neutral because
A. It has emotions
B. It is free from bias
C. It depends on culture
D. It is opinionated

19. Mathematical ideas are represented by
A. Pictures only
B. Words only
C. Symbols and signs
D. Stories

20. Mathematics trains the mind to think
A. Vaguely
B. Emotionally
C. Precisely
D. Randomly

21. Mathematics is both
A. Concrete and emotional
B. Abstract and concrete
C. Emotional and social
D. Linguistic and moral

22. The subject of mathematics encourages
A. Blind belief
B. Guesswork
C. Rational thinking
D. Imitation

23. Mathematics mainly deals with
A. Facts only
B. Structures and patterns
C. Opinions
D. Narratives

24. Mathematics is exact because
A. It changes with time
B. Results are definite
C. It depends on interpretation
D. It is flexible

25. Mathematics promotes
A. Creativity without rules
B. Discipline of mind
C. Emotional growth
D. Storytelling

26. The logical sequence in mathematics is called

- A. Guessing
- B. Randomness
- C. Systematic arrangement**
- D. Memorization

27. Mathematics is free from ambiguity because

- A. It is lengthy
- B. Symbols have fixed meaning**
- C. It uses language
- D. It is abstract

28. Mathematical language is mostly

- A. Narrative
- B. Descriptive
- C. Symbolic**
- D. Emotional

29. Mathematics sharpens

- A. Memory only
- B. Imagination only
- C. Reasoning power**
- D. Emotional skill

30. Mathematics is a tool for

- A. Entertainment
- B. Storytelling
- C. Scientific thinking**
- D. Moral teaching

31. Mathematics concepts are

- A. Opinion-based
- B. Universally accepted**
- C. Region-based
- D. Culture-specific

32. Mathematics is cumulative because

- A. Topics repeat
- B. Learning is hierarchical**
- C. It is easy
- D. It is optional

33. Mathematics encourages

- A. Superstition
- B. Blind faith
- C. Critical thinking**
- D. Imitation

34. Mathematics is independent of

- A. Logic
- B. Symbols
- C. Culture and religion**
- D. Reasoning

35. Mathematics teaches students to be

- A. Emotional
- B. Confused
- C. Precise and accurate**
- D. Casual

36. The abstract nature of mathematics makes it

- A. Useless
- B. Generalized**
- C. Emotional
- D. Difficult always

37. Mathematics deals with

- A. Stories
- B. Emotions
- C. Quantitative relationships**
- D. Opinions

38. Mathematical reasoning avoids

- A. Logic
- B. Proof
- C. Guesswork**
- D. Symbols

39. Mathematics is systematic because

- A. It has many formulas
- B. Concepts are logically arranged**
- C. It is difficult
- D. It is abstract

40. Mathematics helps in developing

- A. Moral values
- B. Emotional values
- C. Intellectual discipline**
- D. Spiritual values

Aims & Objectives of Teaching Mathematics (MCQ 41–120)

41. The main aim of teaching mathematics is to develop

- A. Rote learning
- B. Logical thinking**
- C. Memorization
- D. Fear

42. Mathematics education helps learners to

- A. Avoid problems
- B. Solve real-life problems**
- C. Memorize tables
- D. Copy solutions

43. One important aim of mathematics teaching is

- A. Entertainment
- B. Accuracy**
- C. Guessing
- D. Speed only

44. Teaching mathematics helps in developing

- A. Emotional intelligence
- B. Reasoning power**
- C. Artistic skills
- D. Moral values

45. Mathematics teaching aims to develop

- A. Blind faith
- B. Scientific attitude**

46. One objective of mathematics teaching is

- A. Fear reduction only
- B. Conceptual understanding**
- C. Memorization only
- D. Speed calculation only

47. Mathematics education encourages

- A. Passiveness
- B. Active participation**
- C. Rote learning
- D. Dependence

48. Teaching mathematics helps students to

- A. Avoid logic
- B. Think independently**
- C. Depend on others
- D. Guess answers

49. An important aim of mathematics teaching is

- A. Examination success only
- B. Problem-solving ability**
- C. Memorization
- D. Speed writing

50. Mathematics teaching develops

- A. Emotional thinking
- B. Analytical ability**
- C. Blind faith
- D. Confusion

51. One objective of mathematics teaching is

- A. Learning formulas only
- B. Application of knowledge**
- C. Memorization
- D. Guessing

52. Mathematics helps in developing

- A. Physical strength
- B. Mental discipline**
- C. Emotional growth
- D. Artistic skill

53. Teaching mathematics prepares students for

- A. Story writing
- B. Daily life situations**
- C. Emotional decisions
- D. Moral debates

54. Mathematics teaching aims to develop

- A. Fear of numbers
- B. Confidence in calculations**
- C. Dependence
- D. Guesswork

55. Mathematics education develops

- A. Imagination only
- B. Accuracy and precision**
- C. Emotions
- D. Memory only

56. Teaching mathematics helps in

- A. Superstition
- B. Logical reasoning**
- C. Emotional expression
- D. Guessing

57. One objective of mathematics teaching is to

- A. Confuse students
- B. Develop numerical ability**
- C. Increase fear
- D. Promote memorization

58. Mathematics teaching aims at

- A. Speed only
- B. Understanding concepts**
- C. Copying solutions
- D. Guessing

59. Teaching mathematics develops

- A. Creativity without logic
- B. Problem-solving skills**
- C. Blind belief
- D. Emotional thinking

60. Mathematics education helps learners to

- A. Avoid calculations
- B. Make decisions logically**
- C. Depend on others
- D. Memorize rules

61. The aim of mathematics teaching includes

- A. Fear creation
- B. Intellectual development**
- C. Confusion
- D. Emotional dependency

62. Mathematics teaching encourages

- A. Passive listening
- B. Active learning**
- C. Rote memory
- D. Blind following

63. Teaching mathematics helps in developing

- A. Moral reasoning
- B. Analytical thinking**
- C. Emotional reasoning
- D. Guessing

64. Mathematics teaching aims to develop

- A. Exam fear
- B. Logical habits of mind**
- C. Confusion
- D. Emotional bias

65. Mathematics teaching helps students to

- A. Depend on calculators only
- B. Develop accuracy**

C. Guess answers
D. Avoid reasoning

66. Mathematics education develops

- A. Artistic sense
- B. Numerical literacy**
- C. Emotional skill
- D. Storytelling

67. One objective of mathematics teaching is

- A. Learning by rote
- B. Skill in calculation**
- C. Guessing
- D. Avoiding problems

68. Teaching mathematics helps in

- A. Emotional stability
- B. Clear thinking**
- C. Confusion
- D. Blind faith

69. Mathematics teaching aims at

- A. Teaching tricks only
- B. Developing reasoning ability**
- C. Memorization
- D. Guessing

70. Mathematics education prepares students for

- A. Storytelling
- B. Higher learning**
- C. Emotional debates
- D. Moral preaching

71. Mathematics teaching helps develop

- A. Confusion
- B. Accuracy in work**
- C. Emotional bias
- D. Guessing

72. Mathematics education aims to

- A. Promote fear

B. **Build confidence**
C. Create anxiety
D. Confuse learners

73. Teaching mathematics develops

- A. Emotional thinking
- B. Critical thinking**
- C. Blind belief
- D. Guessing

74. Mathematics teaching helps students to

- A. Avoid challenges
- B. Face problems logically**
- C. Depend on others
- D. Memorize formulas

75. Mathematics education aims at

- A. Rote learning
- B. Conceptual clarity**
- C. Guessing
- D. Fear

76. Teaching mathematics develops

- A. Artistic ability
- B. Scientific temper**
- C. Emotional bias
- D. Moral reasoning

77. Mathematics teaching helps in

- A. Guessing
- B. Decision-making**
- C. Emotional response
- D. Storytelling

78. Mathematics education aims to develop

- A. Confusion
- B. Self-reliance**
- C. Blind faith
- D. Emotional thinking

79. Teaching mathematics helps in

- A. Avoiding logic

B. **Understanding patterns**
C. Memorization only
D. Guessing

80. Mathematics teaching aims at
A. Mechanical learning
B. **Problem-solving approach**
C. Emotional learning
D. Guessing

81. Mathematics teaching helps students to
A. Depend on memorization
B. Avoid reasoning
C. **Develop logical habits**
D. Guess answers

82. An important objective of mathematics teaching is to
A. Teach shortcuts only
B. **Develop accuracy and speed**
C. Promote rote learning
D. Increase anxiety

83. Mathematics education helps in
A. Emotional development only
B. **Clear and systematic thinking**
C. Guesswork
D. Blind belief

84. Teaching mathematics at upper primary stage should aim at
A. Mechanical calculation
B. **Conceptual understanding**
C. Memorization of formulas
D. Examination fear

85. Mathematics teaching helps learners to
A. Avoid challenges
B. **Solve unfamiliar problems**
C. Memorize answers
D. Copy solutions

86. The aim of mathematics teaching is to develop
A. Superstition
B. **Rational thinking**
C. Emotional thinking
D. Blind faith

87. Mathematics education develops
A. Storytelling skill
B. **Numerical competence**
C. Emotional intelligence
D. Artistic sense

88. Teaching mathematics encourages
A. Passive learning
B. **Independent thinking**
C. Guessing
D. Rote memorization

89. One objective of mathematics teaching is
A. Fear creation
B. **Application of mathematics in daily life**
C. Confusion
D. Memorization only

90. Mathematics teaching aims to develop
A. Casual attitude
B. **Precision in work**
C. Emotional bias
D. Guessing habit

91. Mathematics education helps in developing
A. Moral values
B. **Problem-solving attitude**
C. Emotional values
D. Linguistic ability

92. Teaching mathematics develops
A. Blind obedience
B. **Logical sequence of thought**

C. Emotional thinking
D. Guessing

93. Mathematics teaching at upper primary level should focus on
A. Speed only
B. Understanding concepts and processes
C. Memorization only
D. Tricks and shortcuts

94. Mathematics education helps students to
A. Avoid logical thinking
B. Analyze situations
C. Depend on teachers
D. Guess answers

95. Mathematics teaching aims at developing
A. Mechanical skills
B. Critical and creative thinking
C. Emotional response
D. Guessing ability

96. One important aim of teaching mathematics is
A. To create fear
B. To make learners confident
C. To confuse students
D. To promote rote learning

97. Mathematics education develops
A. Emotional discipline
B. Intellectual discipline
C. Moral discipline
D. Physical discipline

98. Teaching mathematics helps learners to
A. Avoid calculations
B. Draw logical conclusions
C. Memorize rules only
D. Guess results

99. Mathematics teaching encourages
A. Superstitious thinking
B. Scientific outlook
C. Emotional dependence
D. Blind belief

100. Mathematics education aims to
A. Teach tricks only
B. Develop understanding of structures
C. Promote memorization
D. Increase anxiety

101. Teaching mathematics helps students to
A. Depend on calculators
B. Develop reasoning ability
C. Avoid logic
D. Guess answers

102. Mathematics teaching aims at
A. Examination success only
B. Overall mental development
C. Speed writing
D. Memorization

103. Mathematics education helps learners to
A. Avoid abstraction
B. Understand abstract ideas
C. Depend on examples only
D. Guess concepts

104. Teaching mathematics develops
A. Emotional reactions
B. Analytical power
C. Blind imitation
D. Guessing

105. Mathematics teaching helps in developing

- A. Casual attitude
- B. Accuracy and neatness**
- C. Emotional bias
- D. Confusion

106. Mathematics education aims to

- A. Create fear of numbers
- B. Remove fear of mathematics**
- C. Promote rote learning
- D. Encourage guessing

107. Teaching mathematics helps students to

- A. Avoid reasoning
- B. Think systematically**
- C. Depend on others
- D. Guess answers

108. Mathematics teaching develops

- A. Artistic thinking
- B. Logical and critical thinking**
- C. Emotional thinking
- D. Blind belief

109. Mathematics education helps in

- A. Memorizing rules
- B. Understanding relationships**
- C. Guessing answers
- D. Copying solutions

110. Teaching mathematics aims at

- A. Learning formulas by heart
- B. Developing problem-solving skills**
- C. Guessing techniques
- D. Avoiding challenges

111. Mathematics education develops

- A. Emotional intelligence
- B. Numerical reasoning**
- C. Moral values
- D. Linguistic skill

112. Teaching mathematics helps learners to

- A. Avoid abstraction
- B. Generalize concepts**
- C. Memorize steps only
- D. Guess outcomes

113. Mathematics teaching aims to develop

- A. Confusion
- B. Clarity of thought**
- C. Emotional bias
- D. Guessing

114. Mathematics education encourages

- A. Rote memorization
- B. Logical explanation**
- C. Blind imitation
- D. Guessing

115. Teaching mathematics helps in

- A. Emotional expression
- B. Developing accuracy in calculation**
- C. Confusion
- D. Guessing

116. Mathematics education aims at

- A. Teaching mechanical skills only
- B. Developing reasoning and logic**
- C. Memorization
- D. Fear creation

117. Teaching mathematics helps students to

- A. Avoid proofs
- B. Understand mathematical**

language

- C. Depend on others
- D. Guess meanings

118. Mathematics teaching

develops

- A. Casual thinking
- B. Orderly thinking**
- C. Emotional thinking
- D. Guessing

119. Mathematics education

helps in

- A. Superstition
- B. Logical decision-making**
- C. Blind faith
- D. Guesswork

120. The ultimate aim of

teaching mathematics is

- A. Examination success
- B. Speed in calculation
- C. Development of logical and rational thinking**
- D. Memorization of formulas

UNIT-2 MCQs

Teaching Methods: Induction, Deduction, Analysis & Synthesis (1-70)

Inductive Method

1. Inductive method proceeds from
 - A. General to particular
 - B. Rule to example
 - C. Particular to general**
 - D. Formula to problem
2. Inductive method is based on
 - A. Memorization
 - B. Guesswork
 - C. Observation and reasoning**
 - D. Drill
3. In inductive method, students first learn
 - A. Definitions
 - B. Theorems
 - C. Examples**
 - D. Formulae
4. Inductive method encourages
 - A. Passive learning
 - B. Discovery learning**
 - C. Rote learning
 - D. Mechanical learning
5. Inductive method is suitable for
 - A. Memorizing rules
 - B. Introducing new concepts**
 - C. Speed calculation
 - D. Revision work
6. Inductive method promotes
 - A. Blind belief
 - B. Logical thinking**
 - C. Guessing
 - D. Dependence

7. In inductive method, teacher's role is
 - A. Dominant
 - B. Authoritative
 - C. Guide and facilitator**
 - D. Lecturer
8. Inductive method is learner-centred because
 - A. Teacher explains rules
 - B. Learners derive rules**
 - C. Textbook dominates
 - D. Drill dominates
9. The inductive method develops
 - A. Memory
 - B. Reasoning ability**
 - C. Speed
 - D. Writing skill
10. A major limitation of inductive method is
 - A. Promotes logic
 - B. Time consuming**
 - C. Learner involvement
 - D. Concept clarity

Deductive Method

11. Deductive method proceeds from
 - A. Particular to general
 - B. Example to rule
 - C. General to particular**
 - D. Observation to rule
12. Deductive method starts with
 - A. Examples
 - B. Activities
 - C. Rule or formula**
 - D. Experiment
13. Deductive method is mainly teacher-centred because

A. Learners discover
B. Teacher explains first
C. Students explore
D. Activities dominate

14. Deductive method is useful for
A. Discovering new concepts
B. Practice and revision
C. Introducing topics
D. Exploration

15. Deductive method saves
A. Effort
B. Energy
C. Time
D. Resources

16. Deductive method emphasizes
A. Discovery
B. Exploration
C. Application of rules
D. Observation

17. Deductive method is best suited for
A. Lower primary
B. Higher classes
C. Beginners
D. Concept formation

18. Deductive method encourages
A. Reasoning
B. Rote learning
C. Discovery
D. Creativity

19. In deductive method, examples are used to
A. Discover rules
B. Verify rules
C. Guess rules
D. Replace rules

20. A drawback of deductive method is
A. Saves time
B. Easy to use
C. Less learner participation
D. Suitable for exams

Analytic Method

21. Analytic method involves
A. Guessing
B. Memorization
C. Breaking a problem into parts
D. Random steps

22. Analysis proceeds from
A. Known to unknown
B. Unknown to known
C. General to particular
D. Simple to complex

23. Analytic method is helpful in
A. Storytelling
B. Problem solving
C. Memorization
D. Drill

24. Analytic method develops
A. Emotional thinking
B. Logical reasoning
C. Guessing habit
D. Blind belief

25. In analysis, teacher emphasizes
A. Final answer
B. Process of solution
C. Speed
D. Memory

26. Analytic method helps students to
A. Memorize steps
B. Understand reasoning
C. Guess results
D. Copy solutions

27. Analysis method is mainly used in

- A. Arithmetic only
- B. Geometry only
- C. **Algebra and problem solving**
- D. Tables

28. Analytic method trains students to think

- A. Randomly
- B. Emotionally
- C. **Step by step**
- D. Casually

29. A limitation of analytic method is

- A. Logical
- B. Clear
- C. **Lengthy process**
- D. Accurate

30. Analytic method is best for

- A. Drill work
- B. **Understanding concepts deeply**
- C. Speed tests
- D. Memorization

31. Synthetic method proceeds from

- A. Unknown to known
- B. **Known to unknown**
- C. Complex to simple
- D. Whole to parts

32. Synthesis means

- A. Breaking down
- B. **Combining parts**
- C. Guessing
- D. Memorizing

33. Synthetic method is useful for

- A. Understanding logic
- B. **Presenting final solution**

34. Synthetic method emphasizes

- A. Reasoning
- B. **Result and presentation**
- C. Process
- D. Analysis

35. Synthetic method is quicker because

- A. Steps are skipped
- B. **Direct approach is used**
- C. Guessing is done
- D. Memorization occurs

36. Synthetic method is suitable for

- A. Beginners
- B. **Revision and practice**
- C. Discovery learning
- D. Exploration

37. Synthetic method encourages

- A. Logical reasoning
- B. **Mechanical learning**
- C. Discovery
- D. Exploration

38. Synthetic method is often used in

- A. Exploration
- B. **Examinations**
- C. Concept formation
- D. Activities

39. A drawback of synthetic method is

- A. Saves time
- B. Clear presentation
- C. **Lack of reasoning development**
- D. Easy evaluation

40. Best teaching uses

- A. Only analysis
- B. Only synthesis

Synthetic Method

31. Synthetic method proceeds from

- A. Unknown to known
- B. **Known to unknown**
- C. Complex to simple
- D. Whole to parts

32. Synthesis means

- A. Breaking down
- B. **Combining parts**
- C. Guessing
- D. Memorizing

33. Synthetic method is useful for

- A. Understanding logic
- B. **Presenting final solution**

34. Synthetic method emphasizes

- A. Reasoning
- B. **Result and presentation**
- C. Process
- D. Analysis

35. Synthetic method is quicker because

- A. Steps are skipped
- B. **Direct approach is used**
- C. Guessing is done
- D. Memorization occurs

36. Synthetic method is suitable for

- A. Beginners
- B. **Revision and practice**
- C. Discovery learning
- D. Exploration

37. Synthetic method encourages

- A. Logical reasoning
- B. **Mechanical learning**
- C. Discovery
- D. Exploration

38. Synthetic method is often used in

- A. Exploration
- B. **Examinations**
- C. Concept formation
- D. Activities

39. A drawback of synthetic method is

- A. Saves time
- B. Clear presentation
- C. **Lack of reasoning development**
- D. Easy evaluation

40. Best teaching uses

- A. Only analysis
- B. Only synthesis

- C. Both analysis and synthesis
- D. Memorization

Approaches to Teaching Mathematics

Constructivist Approach

- 41. Constructivist approach believes that knowledge is
 - A. Transmitted
 - B. Taught
 - C. **Constructed by learner**
 - D. Memorized
- 42. Constructivism emphasizes
 - A. Teacher authority
 - B. **Learner's prior knowledge**
 - C. Rote learning
 - D. Drill
- 43. In constructivist classroom, teacher is a
 - A. Dictator
 - B. Lecturer
 - C. **Facilitator**
 - D. Examiner
- 44. Constructivist approach encourages
 - A. Passive listening
 - B. **Active participation**
 - C. Memorization
 - D. Copying
- 45. Learning in constructivism is
 - A. Mechanical
 - B. **Meaningful**
 - C. Rote
 - D. Accidental
- 46. Constructivist approach focuses on
 - A. Correct answer only
- 47. Constructivism promotes
 - A. Individual isolation
 - B. **Social interaction**
 - C. Teacher dominance
 - D. Silence
- 48. Constructivist learning emphasizes
 - A. Final product
 - B. **Understanding concepts**
 - C. Drill
 - D. Speed
- 49. Constructivist approach is learner-centred because
 - A. Teacher explains
 - B. **Learner constructs meaning**
 - C. Textbook dominates
 - D. Exam dominates
- 50. Constructivism discourages
 - A. Exploration
 - B. **Rote memorization**
 - C. Discussion
 - D. Reasoning

Activity-Based Approach

- 51. Activity-based learning emphasizes
 - A. Lecture
 - B. Memorization
 - C. **Learning by doing**
 - D. Drill
- 52. Activity-based approach promotes
 - A. Passive learning
 - B. **Experiential learning**
 - C. Rote learning
 - D. Guessing

53. Activities in mathematics help in

- A. Confusion
- B. Concept clarity**
- C. Guessing
- D. Memorization

54. Activity-based approach develops

- A. Fear
- B. Interest and motivation**
- C. Anxiety
- D. Dependence

55. In activity-based learning, students are

- A. Passive listeners
- B. Active participants**
- C. Silent observers
- D. Note takers

56. Activity-based teaching is suitable for

- A. Rote learning
- B. Upper primary mathematics**
- C. Only exams
- D. Speed drills

57. Activities help learners to

- A. Memorize rules
- B. Discover concepts**
- C. Guess answers
- D. Copy notes

58. Activity-based approach emphasizes

- A. Product
- B. Process**
- C. Speed
- D. Drill

59. Activity-based learning encourages

- A. Individual isolation
- B. Group work**
- C. Silence
- D. Teacher dominance

60. A major advantage of activity-based learning is

- A. Time saving
- B. Joyful learning**
- C. Easy testing
- D. Memorization

Constructivist + Activity Based

61. Both constructivist and activity-based approaches promote

- A. Rote learning
- B. Active learning**
- C. Memorization
- D. Drill

62. These approaches help students to

- A. Fear mathematics
- B. Relate maths to life**
- C. Avoid thinking
- D. Guess answers

63. In these approaches, assessment should be

- A. Only written
- B. Continuous and formative**
- C. Memory-based
- D. Final exam only

64. Learning becomes effective when

- A. Teacher dominates
- B. Learner is engaged**
- C. Memorization increases
- D. Notes are copied

65. These approaches support

- A. Mechanical learning
- B. Conceptual understanding**
- C. Guessing
- D. Rote memory

66. Constructivist and activity-based approaches reduce

- A. Interest
- B. Math anxiety**
- C. Understanding
- D. Participation

67. These approaches encourage

- A. Blind belief
- B. Critical thinking**
- C. Guessing
- D. Imitation

68. Learning through activities helps in

- A. Forgetting
- B. Long-term retention**
- C. Confusion
- D. Anxiety

69. Teacher's role is mainly to

- A. Dictate
- B. Facilitate learning**
- C. Control students
- D. Evaluate only

70. Best learning occurs when

- A. Teacher talks more
- B. Students explore and interact**
- C. Notes are memorized
- D. Exams dominate

UNIT-3 MCQs (1–120)

A. Evaluation in Mathematics – Basics (1–30)

1. Evaluation in mathematics mainly aims at
 - A. Ranking students
 - B. Assessing learning outcomes**
 - C. Punishing learners
 - D. Completing syllabus
2. Evaluation is a process of
 - A. Teaching
 - B. Learning
 - C. Judging learning progress**
 - D. Memorization
3. The purpose of evaluation is to
 - A. Create fear
 - B. Improve teaching–learning process**
 - C. Fail students
 - D. Compare students
4. Evaluation should be
 - A. Occasional
 - B. End-based
 - C. Continuous**
 - D. Random
5. Evaluation helps the teacher to
 - A. Ignore weaknesses
 - B. Identify learning gaps**
 - C. Increase workload
 - D. Memorize marks
6. Evaluation in mathematics should focus on
 - A. Speed only
 - B. Understanding and reasoning**
7. Evaluation is closely related to
 - A. Punishment
 - B. Discipline
 - C. Objectives of teaching**
 - D. Homework
8. Good evaluation promotes
 - A. Fear
 - B. Learning improvement**
 - C. Competition only
 - D. Stress
9. Evaluation helps students to
 - A. Feel anxious
 - B. Know their progress**
 - C. Guess answers
 - D. Memorize
10. Evaluation is an integral part of
 - A. Examination only
 - B. Teaching–learning process**
 - C. Discipline
 - D. Homework
11. Evaluation in mathematics should be
 - A. Subjective only
 - B. Objective and comprehensive**
 - C. Random
 - D. Mechanical
12. Evaluation helps in
 - A. Punishing learners
 - B. Curriculum improvement**
 - C. Ignoring errors
 - D. Ranking only
13. Evaluation should be based on
 - A. Teacher's mood
 - B. Pre-determined criteria**

C. Guessing
D. Bias

14. Evaluation in mathematics must assess
A. Memory only
B. Conceptual understanding
C. Writing speed
D. Neatness only

15. Evaluation is more meaningful when it is
A. End-term only
B. Continuous and comprehensive
C. Sudden
D. Rare

16. Evaluation helps teachers to
A. Complete syllabus fast
B. Modify teaching strategies
C. Reduce teaching
D. Increase homework

17. Evaluation should be learner-centred because
A. Teacher dominates
B. Learner's progress is focused
C. Exams dominate
D. Marks dominate

18. Evaluation measures
A. Teacher performance only
B. Student learning outcomes
C. School discipline
D. Attendance

19. Evaluation should encourage
A. Fear of failure
B. Self-assessment
C. Comparison
D. Competition only

20. Evaluation in mathematics aims to
A. Memorize formulas

B. Develop problem-solving ability
C. Speed writing
D. Guessing

21. Evaluation is useful for
A. Only students
B. Both teacher and students
C. Administrators only
D. Parents only

22. Evaluation should be free from
A. Logic
B. Bias
C. Criteria
D. Planning

23. Evaluation helps in identifying
A. Teacher mistakes only
B. Student difficulties
C. School rules
D. Timetable issues

24. Evaluation should motivate students to
A. Avoid mathematics
B. Improve performance
C. Fear exams
D. Depend on others

25. Evaluation is different from examination because
A. It is shorter
B. It is continuous
C. It is difficult
D. It is written only

26. Evaluation should assess
A. Only final answers
B. Process and reasoning
C. Speed
D. Memorization

27. Evaluation in mathematics should be

A. Stressful
B. Diagnostic and remedial
C. Mechanical
D. Punitive

28. Evaluation should focus on
A. Marks only
B. Learning outcomes
C. Rank only
D. Competition

29. Evaluation helps in
A. Ignoring errors
B. Identifying strengths and weaknesses
C. Increasing fear
D. Guessing

30. Evaluation should be
A. One-time
B. Ongoing
C. Accidental
D. Optional

C. Interaction
D. Activities

34. Unit tests and annual exams are examples of
A. Informal evaluation
B. Formal evaluation
C. Diagnostic evaluation
D. Remedial evaluation

35. Informal evaluation is
A. Rigid
B. Flexible
C. Examination-based
D. Stressful

36. Informal evaluation includes
A. Annual exams
B. Observation and interaction
C. Final tests
D. Board exams

37. Informal evaluation helps in
A. Ranking students
B. Understanding day-to-day progress
C. Final certification
D. Promotion

B. Formal and Informal Evaluation (31–60)

31. Formal evaluation is usually
A. Continuous
B. Planned and structured
C. Casual
D. Unplanned

32. Formal evaluation includes
A. Observation
B. Oral questioning
C. Written examinations
D. Discussion

33. Formal evaluation mainly focuses on
A. Process
B. Product of learning

38. Questioning during teaching is an example of
A. Formal evaluation
B. Informal evaluation
C. Summative evaluation
D. Terminal evaluation

39. Informal evaluation is mostly
A. Written
B. Oral and observational
C. Objective only
D. Exam-based

40. Formal evaluation is usually
A. Diagnostic

- B. **Summative**
- C. Remedial
- D. Informal

41. Informal evaluation helps in

- A. Final grading
- B. Immediate feedback**
- C. Certification
- D. Promotion

42. Formal evaluation is conducted

- A. Daily
- B. At fixed intervals**
- C. Randomly
- D. Continuously

43. Informal evaluation reduces

- A. Learning
- B. Math anxiety**
- C. Interaction
- D. Understanding

44. Informal evaluation focuses more on

- A. Marks
- B. Learning process**
- C. Ranking
- D. Comparison

45. Formal evaluation is necessary for

- A. Daily teaching
- B. Certification and promotion**
- C. Diagnosis
- D. Remediation

46. Informal evaluation is helpful in

- A. Ignoring errors
- B. Identifying misconceptions**
- C. Final grading
- D. Ranking

47. Formal evaluation usually uses

- A. Observation
- B. Discussion

- C. **Standardized tests**
- D. Interaction

48. Informal evaluation supports

- A. Rote learning
- B. Continuous learning**
- C. Memorization
- D. Guessing

49. Formal evaluation is mostly

- A. Qualitative
- B. Quantitative**
- C. Descriptive
- D. Narrative

50. Informal evaluation is best used for

- A. Certification
- B. Improving teaching**
- C. Promotion
- D. Ranking

51. Formal evaluation may create

- A. Motivation only
- B. Exam stress**
- C. Joyful learning
- D. Interaction

52. Informal evaluation encourages

- A. Fear
- B. Free expression**
- C. Competition
- D. Silence

53. Informal evaluation helps teachers to

- A. Judge final result
- B. Adjust teaching methods**
- C. Rank students
- D. Punish students

54. Formal evaluation mainly measures

- A. Learning process
- B. Achievement**

C. Interaction
D. Participation

55. Informal evaluation is more suitable for
A. End-term
B. Formative assessment
C. Certification
D. Ranking

56. Formal evaluation emphasizes
A. Understanding
B. Scores and grades
C. Discussion
D. Exploration

57. Informal evaluation is continuous because
A. It is written
B. It occurs during teaching
C. It is difficult
D. It is final

58. Both formal and informal evaluation are
A. Opposite
B. Complementary
C. Unrelated
D. Same

59. Informal evaluation helps in
A. Ignoring slow learners
B. Early identification of difficulties
C. Final promotion
D. Ranking

60. Effective evaluation uses
A. Only formal tools
B. Only informal tools
C. Both formal and informal tools
D. Exams only

C. Error Analysis (61–90)

61. Error analysis means
A. Ignoring mistakes
B. Studying students' errors
C. Punishing students
D. Reducing marks

62. Error analysis helps teachers to
A. Criticize learners
B. Understand misconceptions
C. Increase workload
D. Fail students

63. Errors in mathematics mostly occur due to
A. Laziness
B. Misconceptions
C. Intelligence
D. Discipline

64. Error analysis helps in
A. Ranking students
B. Improving teaching methods
C. Increasing fear
D. Memorization

65. Errors should be treated as
A. Failures
B. Learning opportunities
C. Crimes
D. Negligence

66. Conceptual errors arise due to
A. Speed
B. Lack of understanding
C. Neatness
D. Writing

67. Procedural errors occur when students
A. Don't know concepts
B. Apply steps incorrectly

C. Guess answers
D. Skip exams

68. Error analysis helps teachers to plan
A. Exams
B. Remedial teaching
C. Punishment
D. Ranking

69. Frequent errors indicate
A. Carelessness
B. Learning difficulty
C. Laziness
D. Low IQ

70. Error analysis should be
A. Punitive
B. Diagnostic
C. Judgmental
D. Casual

71. Errors in mathematics help teachers to
A. Ignore students
B. Identify weak areas
C. Increase syllabus
D. Reduce teaching

72. Error analysis promotes
A. Fear
B. Reflective teaching
C. Memorization
D. Guessing

73. Errors should be corrected through
A. Punishment
B. Proper guidance
C. Insult
D. Comparison

74. Error analysis helps students to
A. Feel embarrassed
B. Learn from mistakes

C. Avoid maths
D. Guess answers

75. Common errors in maths include
A. Language errors
B. Conceptual and procedural errors
C. Emotional errors
D. Moral errors

76. Error analysis reduces
A. Learning
B. Repetition of mistakes
C. Understanding
D. Interest

77. Error analysis is essential for
A. Fast learners only
B. All learners
C. Toppers only
D. Teachers only

78. Errors should be discussed in a
A. Punitive manner
B. Supportive environment
C. Competitive way
D. Fearful manner

79. Error analysis helps in
A. Speed improvement only
B. Concept clarification
C. Memorization
D. Guessing

80. Error analysis is a part of
A. Formal evaluation only
B. Diagnostic evaluation
C. Summative evaluation
D. Final examination

81. Teachers should view errors as
A. Weaknesses only
B. Indicators of thinking

C. Failure signs
D. Carelessness

82. Error analysis supports
A. Mechanical learning
B. Conceptual learning
C. Rote memory
D. Guesswork

83. Error analysis should be done
A. After exams only
B. Continuously
C. Occasionally
D. Rarely

84. Error analysis improves
A. Fear
B. Teaching effectiveness
C. Anxiety
D. Confusion

85. Errors reveal students'
A. Intelligence level
B. Thinking process
C. Background only
D. Writing skill

86. Error analysis helps in
A. Punishment
B. Designing remedial measures
C. Ranking
D. Promotion

87. Teachers should encourage
students to
A. Hide errors
B. Discuss errors openly
C. Avoid practice
D. Guess answers

88. Error analysis is useful for
A. Teachers only
B. Both teachers and students

C. Parents only
D. Administrators only

89. Error analysis helps to
A. Increase workload
B. Prevent future mistakes
C. Increase anxiety
D. Delay learning

90. Error analysis is most useful in
A. Rote learning
B. Concept-based learning
C. Guessing
D. Memorization

D. Remedial and Enrichment Programmes (91–120)

91. Remedial teaching is meant for
A. All students
B. Slow learners
C. Toppers only
D. Teachers

92. Remedial programmes aim to
A. Promote competition
B. Remove learning difficulties
C. Increase syllabus
D. Rank students

93. Remedial teaching should be
A. General
B. Individualized
C. Mechanical
D. Rigid

94. Remedial teaching is based on
A. Guessing
B. Diagnostic evaluation
C. Final exams
D. Promotion

95. Remedial teaching helps in
A. Ignoring errors

B. **Correcting misconceptions**

C. Speed writing

D. Ranking

96. Remedial teaching should be

A. Punitive

B. **Supportive**

C. Competitive

D. Stressful

97. Enrichment programmes are meant for

A. Slow learners

B. Average learners

C. **Gifted learners**

D. All learners only

98. Enrichment programmes aim to

A. Repeat syllabus

B. **Extend learning beyond syllabus**

C. Reduce learning

D. Memorization

99. Enrichment activities include

A. Drill only

B. **Projects and puzzles**

C. Repetition

D. Punishment

100. Remedial teaching focuses on

A. Strengths

B. **Weak areas**

C. Ranking

D. Speed

101. Enrichment programmes promote

A. Fear

B. **Creativity and higher-order thinking**

C. Memorization

D. Guessing

102. Remedial teaching should be conducted

A. Before diagnosis

B. **After identifying errors**

C. Randomly

D. Once a year

103. Enrichment programmes help

A. Slow learners only

B. **Fast learners grow further**

C. Teachers only

D. Administrators

104. Remedial teaching uses

A. Same method for all

B. **Different strategies**

C. Exams only

D. Punishment

105. Enrichment programmes include

A. Revision

B. **Challenging problems**

C. Remedial drills

D. Repetition

106. Remedial teaching aims to

A. Lower standards

B. **Bring learners to expected level**

C. Create fear

D. Increase syllabus

107. Enrichment activities make learning

A. Mechanical

B. **Interesting and challenging**

C. Stressful

D. Rigid

108. Remedial teaching helps to

A. Promote rote learning

B. **Build confidence**

C. Increase anxiety
D. Rank students

109. Enrichment programmes encourage
A. Memorization
B. Independent thinking
C. Guessing
D. Dependence

110. Remedial teaching should be
A. Group-based only
B. Need-based
C. Random
D. Uniform

111. Enrichment programmes help students to
A. Avoid maths
B. Explore deeper concepts
C. Memorize more
D. Guess answers

112. Remedial teaching reduces
A. Interest
B. Learning gaps
C. Participation
D. Understanding

113. Enrichment programmes are a part of
A. Punishment
B. Differentiated instruction
C. Ranking
D. Drill

114. Remedial teaching should be
A. Fast-paced
B. Slow and systematic
C. Rigid
D. Competitive

115. Enrichment programmes motivate students to
A. Compete blindly
B. Learn beyond textbook
C. Fear failure
D. Memorize

116. Remedial teaching supports
A. Only exams
B. Inclusive education
C. Ranking
D. Competition

117. Enrichment activities should be
A. Easy
B. Challenging
C. Repetitive
D. Mechanical

118. Remedial teaching improves
A. Anxiety
B. Basic mathematical skills
C. Fear
D. Confusion

119. Enrichment programmes develop
A. Speed only
B. Higher-order thinking skills
C. Memorization
D. Guessing

120. Effective mathematics teaching requires
A. Only evaluation
B. Only exams
C. Evaluation, remedial and enrichment programmes
D. Ranking
